Promotion of ZnAl₂O₄ formation by LiF

Part 2 Effect of particle size of alumina on the kinetics and microstructure of $ZnAI_2O_4$ formation in the presence of LiF

M. HASHIBA, Y. NURISHHI, T. HIBINO Department of Industrial Chemistry, Faculty of Engineering, Gifu University; Yanagido, Gifu-shi 501-11, Japan

The effects of the particle size of Al_2O_3 on the formation of $ZnAl_2O_4$ in the presence of LiF were investigated. The promotion of $ZnAl_2O_4$ formation depended on the dissolution rate of Al_2O_3 into an intermediate phase which contained LiF, ZnO and Al_2O_3 , i.e. the dissolution of Al_2O_3 was a key step for the promotion of the reaction. In order to promote the reaction it was necessary that the intermediate phase containing Al_2O_3 spread over the whole of the specimen before a dense $ZnAl_2O_4$ layer started to grow around the Al_2O_3 particles. Rapid dissolution of Al_2O_3 of a finer particle size than $10 \,\mu$ m was preferable for the promotion of $ZnAl_2O_4$ formation in the presence of LiF. Interference in $ZnAl_2O_4$ formation by the formation of a byproduct (LiAl_5O_8) was found in specimens containing a starting Al_2O_3 of grain size larger than $10 \,\mu$ m.

1. Introduction

In a powdered solid-state reaction, additions of additives are important to increase the amount of reaction products and to lower the initiation temperature of the reaction. The effectiveness of lithium fluoride is well known; for example, lithium fluoride has been used to produce transparent magnesia ceramics [1-3]. The physical nature of the raw materials significantly affects a powdered solid-state reaction. In a previous paper [4], the state of agglomeration and aggregation of alumina was studied with regard to its effect on the rate. The aim of this paper is to examine the effect of the particle size of Al_2O_3 on $ZnAl_2O_4$ formation in the presence of LiF. Measurements of the rate by chemical analysis and observation of the microstructures by a scanning electron microscope were performed.

2. Experimental procedure

2.1. Materials

Electrofused aluminium oxide of 98.5% purity from Fujimi Kenma Co., Nagoya 452, Japan, was used as the reactant source. Six kinds of alumina were prepared with particle sizes ranging over average diameters of 2, 5, 10, 23, 60 and 270 μ m as measured by a scanning electron microscope (SEM). Fine zinc oxide powder was of the guaranteed reagent grade from Kishida Chemicals Co., Osaka 571, Japan. The particle size was measured by transmission electron microscopy (TEM) to be in the vicinity of 0.3 μ m. Lithium fluoride was an extra-pure reagent from Nakarai Chemicals Co., Kyoto 604, Japan.

2.2. Sample preparation

Six reaction specimens containing 20 mol % of lithium fluoride were prepared by combining equimolar

amounts of aluminium oxide of each different particle size with the fine zinc oxide. Six specimens were designated as Samples I to VI in the increasing order of particle size of alumina (see Section 2.1). Samples were mixed by shaking the powder in the dry state. The mixture was compacted under a pressure of 15 MPa. The compacts were fired in an electric furnace at 570 to 900°C for various durations up to 50 h.

2.3. Determination of the extent of $ZnAl_2O_4$ formation

The extent of $ZnAl_2O_4$ formation was calculated from the amount of residual ZnO. The latter was determined chemically by dissolving ZnO with $2 \mod dm^{-3}$ HCl solution and titrating Zn^{2+} with 0.01 mol dm⁻³ EDTA solution with Eriochrome Black T (EBT) as the indicator at pH 10.

2.4. Phase analysis and microstructural observation

Phases in the fired specimens were identified using conventional powder techniques of X-ray diffraction (XRD) analysis (Jeol Model JDX 7E). Green and fired compacts were impregnated in epoxy resin and subjected to grinding and final polishing with $2 \mu m$ diamond paste. Polished samples were observed by an optical microscope in reflected light and also by the SEM. The chemical composition of phases in the microstructure was analysed by an energy-dispersive X-ray microanalyser (EDX) (Horiba Ltd Model EMAX 8000 S) attached to the SEM. A Hitachi Model H 800 transmission electron microscope was also employed to determine the particle size of the starting powders.

3. Results and discussion

3.1. Observation of microstructures

Microstructures of ZnAl₂O₄ for specimens which contained a smaller size of Al₂O₃ than 10 μ m were classified into three steps as shown in Figs 1a to c as the same manner as examined in previous work [5]. Fig. 1a is the first step in the formation of an intermediate liquid phase by the corrosion of Al₂O₃ particles by fluoride liquid in the early stage of reaction, designated as Step I. The greyish particles are Al_2O_3 . Zinc oxide surrounds the Al₂O₃ particles which have been corroded with fluoride liquid. Darkish particles of LiF can also be seen in the ZnO powder. In Step II, which is the middle stage, a $ZnAl_2O_4$ layer forms around the Al_2O_3 particles. A part of the intermediate liquid phase is present in the interspace between the $ZnAl_2O_4$ layer and the Al_2O_3 particle as shown in Fig. 1b. Step III, shown in Fig. 1c, represents the disappearance of Al_2O_3 particles in the final stage of the reaction. On the other hand, the specimens containing Al_2O_3 of a size larger than 10 μ m showed ZnAl₂O₄ formation with the formation of LiAl₅O₈, as shown in a previous paper [5].

3.2. Effect of particle size of alumina on the rate of ZnAl₂O₄ formation

The effects of the particle size of alumina on $ZnAl_2O_4$ formation in the presence of LiF were examined. Fig. 2

Figure 1 Microstructures of Sample III with the following firing conditions (bar = $50 \,\mu$ m): (a) 600° C, 0.5 h, (b) 600° C, 20 h, (c) 700° C, 20 h.

shows the degree of $ZnAl_2O_4$ formation, α , at various firing times for specimens with various particle sizes of Al_2O_3 . The amount of $ZnAl_2O_4$ abruptly increased up to a certain limit in an early stage of the reaction and then the reaction almost stopped in all cases, irrespective of the particle size of Al_2O_3 and the firing temperature.

Fig. 3 shows the amount of $ZnAl_2O_4$ in samples fired for 50 h, α_{max} , as a function of the size of Al_2O_3 and the firing temperature. The value of α_{max} steeply increases with a decrease in particle size at low firing temperatures (below 700° C). However, at temperatures above 800° C the values of α_{max} increase almost linearly with a decrease of the particle size of Al_2O_3 and the particle-size dependence is mild.

The rate curve for each specimen was analysed by the Hancock and Sharp method [6]. Fig. 4 shows the plot of $\ln \{\ln [1/(1 - \alpha)]\}$ against $\ln t$. A process with a high slope of 1.5 would correspond to a nucleationcontrolled reaction [6, 7]. For all specimens the nucleation process has limited the initial stage of ZnAl₂O₄ formation, and the nucleation process was followed by a process with a low slope of 0.5 which corresponded to a diffusion-controlled reaction [6, 7]. For the specimens which contain larger sizes of Al_2O_3 than $10 \,\mu m$, $ZnAl_2O_4$ formation has stopped, probably due to the appearance of $LiAl_5O_8$. For the specimens which contain smaller sizes of Al₂O₃ than $10 \,\mu m$, ZnAl₂O₄ has been formed without the formation of LiAl₅O₈. Thus, the characteristic feature of the reaction in the variation of the particle size of Al₂O₃ is the appearance of $LiAl_{s}O_{s}$ above a certain size of alumina powder, and this inhibits the transport of material. The induction time at low firing temperatures could be avoided by decreasing the size of Al₂O₃ below 10 μ m. These two factors would be helpful for the improvement of ZnAl₂O₄ formation by LiF. The rate curve for Sample I shows a brief induction time for $ZnAl_2O_4$ formation. The length, however, is insignificant compared with that for the specimen containing agglomerated Al_2O_3 .

In the previous paper [4] it was revealed that inhomogeneities in the mixed state by uneven mixing,

Figure 2 Rate curves of $ZnAl_2O_4$ formation in (a) Sample I, (b) Sample III and (c) Sample V fired at various temperatures as a function of firing time. (\odot) 570° C, (\triangle) 600° C, (\square) 700° C, (\bullet) 800° C, (\triangle) 900° C; (\blacksquare) without additive at (a) 800° C, (b) 1000° C, (c) 1100° C.

900°C

800°C

700°C

PARTICLE SIZE (µm)

200

100

0.0

0

Figure 3 Extent of $ZnAl_2O_4$ formation in Samples I to VI fired for 50 h at various temperatures as a function of the particle size of Al_2O_3 .

Figure 4 Analysis of $ZnAl_2O_4$ formation in Sample I at low temperatures, treated by the Hancock and Sharp method. (O) 570°C, (Δ) 600°C.

and the formation of agglomerates and aggregates, resulted in an induction time. But in the examined range of the size of Al_2O_3 between 2 and $10 \,\mu\text{m}$ the length of the induction time was insignificant. The appearance of an induction time before $ZnAl_2O_4$ formation can be avoided by the use of Al_2O_3 in smaller particle sizes than $10 \,\mu\text{m}$ with no agglomeration and no aggregation.

3.3. XRD analysis of phases developed during the reaction

X-ray diffraction analysis was applied to examine the crystalline phases which appeared in the process of reaction during $ZnAl_2O_4$ formation in the presence of LiF with various particle sizes of Al_2O_3 .

Fig. 5 shows the observed range of $ZnAl_2O_4$ formation, with or without $LiAl_5O_8$ formation, as a function of the size of Al_2O_3 and the firing temperature.

Lithium aluminate can be found in the ranges of larger Al_2O_3 particle sizes than 10 μ m and higher firing temperatures than 700° C. As previously described [5],

Figure 5 Observed range of each phase detected by X-ray diffraction analysis as a function of firing temperature and the particle size of Al_2O_3 .

Figure 6 Schematic reaction model for a specimen with fine Al₂O₃.

in the specimens prepared with a large size of Al_2O_3 a part of the intermediate liquid phase was confined in the interspace between the dense $ZnAl_2O_4$ layer and the Al_2O_3 particle. The dense $ZnAl_2O_4$ layer interfered with the spreading of liquid over the ZnO phase. LiAl₅O₈ has also deposited on the ZnAl₂O₄ layer from the confined liquid.

On the other hand, the Al_2O_3 phase has completely dissolved without forming $LiAl_5O_8$ in Samples I to III with fine Al_2O_3 particle sizes under $10 \,\mu\text{m}$ and an elevation of firing temperature to higher than 700° C. Fig. 6 shows a schematic reaction model for specimens prepared with a small size of alumina. As seen in Fig. 6, fast spreading of alumina over the whole of the specimen is possible by rapid and complete dissolution of Al_2O_3 into the liquid before the formation of a dense $ZnAl_2O_4$ barrier inhibits the intermediate liquid phase from spreading and induces $LiAl_5O_8$ to crystallize.

4. Conclusions

It is concluded that the formation of $ZnAl_2O_4$ in the presence of LiF was remarkably affected by the particle size of Al_2O_3 starting material. Interference in $ZnAl_2O_4$ formation by the formation of a by-product (LiAl₅O₈) was found in specimens containing starting Al_2O_3 of grain sizes larger than 10 μ m. Promotion of $ZnAl_2O_4$ formation was dependent on the dissolution rate of Al_2O_3 into the intermediate phase, which was a key step in the promotion of the reaction. It was necessary that the intermediate phase containing Al_2O_3 spread over the whole of the specimen before the growth of a dense $ZnAl_2O_4$ barrier around the Al_2O_3 particle. In order to promote $ZnAl_2O_4$ formation, the use of Al_2O_3 finer than 10 μ m was preferable in the presence of LiF to avoid the formation of LiAl₅O₈.

References

- 1. M. W. BENECKE, N. E. OLSON and J. A. PASK, J. Amer. Ceram. Soc. 50 (1967) 365.
- 2. P. E. HERT, R. B. ATKIN and J. A. PASK, *ibid.* 53 (1970) 83.
- 3. V. V. RANA, S. M. COPLEY and J. M. WHELAN, in "Ceramic Microstructures '76", edited by R. M. Fulrath and J. A. Pask (Westview, Boulder, Colorado, 1977) p. 434.
- 4. M. HASHIBA, Y. NURISHI and T. HIBINO, J. Mater. Sci. 23 (1987) 565.
- 5. M. HASHIBA, E. MIURA, Y. NURISHI and T. HIB-INO, Nippon Kagaku Kaishi **1983** (1983) 501.
- 6. J. D. HANCOCK and J. H. SHARP, J. Amer. Ceram. Soc. 55 (1972) 74.
- 7. S. F. HULBERT, J. Br. Ceram. Soc. 6 (1969) 11.

Received 23 March and accepted 3 June 1987